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Abstract The Bayesian statistical method of spectral estimation is applied to NMR free induction 

decay signals at various values of signal-to-noise ratio (SNR). The frequency and amplitude 

estimates from the Bayesian calculations are more &curate than those from the commonly used 

fast Fourier transformation of the same data sets. Both real and synthetic data sets are 

examined with the Bayesian results being superior in all casts. In addition to the superior 

performance at low SNR the Bayesian derived amplitudes and frequency estimates were not as 

affected by signal decay as in Fourier Transformed spectra. Finally, the amplitudes obtained are 

equal to the FFT integrated intensities resulting in an apparent frequency domain signal-to-noise 

ratio (SNR) greater than the FFT SNR by a factor proportional to the FFT frequency domain 

linewidth. Far typical high resolution spectra this improvement was approximately a factor of 

2.5. Even greater improvement is obtained when rapidly decaying signals are analyzed. 

Bayesian computation time for the 6 line p-chloroanaline and chloroform spectrum was 

approximately 12 minutes on a modem computer work station. 

1559 

Copyright 8 1993 hy Marcel Dekkcr, Inc 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
3
:
5
0
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



I560 EVILIA, EFFIONG. AND WHITTENBURG 

Introduction 

NMR Spectroscopy is well known to be insensitive relative to other forms of spectroscopy 

due to the nearly equal Boltzmann populations at the low energies characteristic of even the 

highest field instruments. Because of wide-spread interest in the information available from 

NMR spectroscopy, numerous attempts have been made to maximize the signal-to-noise ratio of 

NMR instruments and to extract the information as efficiently as possible. 

The principal means by which SNR has been increased is through increases in the magnet 

field strength. Although increases in field strength result in increases in the Boltzmann 

distribution leading to signal increases that are approximately proportional to the square of the 
magnet field strength, non-ideal factors that become significant at higher frequencies limit SNR 

improvements to considerably less than the squared relationship predicts'*2. Indeed, the current 

state-of-the-art in magnet field strength is approaching a value at which non-idealities and 

relaxation effects will result in poorer performance at higher fields for 'H spectra of even modest 

sized  molecule^^^*^. In addition to the high field magnets, S N R  improvements have been made 

by refinements in probe technology, RF circuit optimization and the use of very low noise 

preamplifiers. Along with the hardware improvements, a variety of sophisticated pulse 

techniques such as INEPT and HMQC have been employed for those situations in which the 

methods are applicable. These efforts and careful consideration of all the experimental and 

interpretation factors affecting SNR's have greatly improved the inherent sensitivity of the NMR 

technique compared to even a few years 

The hardware, signal processing and pulse sequence developments are approaching the 

point of hminishing returns, however, and it is unliely that future refinements in these areas will 

result in improvements comparable to those obtained in the past. While the data acquisition part 

of the NMR sensitivity problem has becn well developed, the data analysis aspect has been less 

well developed. Recent advances in alternative computational methods have shown some 

promise for dramatic spectral improvements compared to Fourier transformation for spectral 

calculations-'7. These alternative computational methods rely on statistical theory and appear to 

have distinct advantages for extraction of signal from noise. Despite the promise that these 

approaches show, they have not received wide spread acceptance because of problems of artifact 

generation, they are computationally intensive and of the common belief that the Fourier 

transformed result is the "comct" result and cannot be improved! Furthermore, the 

mathematical foundation and principles of these methods are complex and difficult to understand. 

In this paper we report on the application of the Bayesian method of spcctTd estimation 

to NMR signals of low signal-to-noise ratio. The theory of Bayesian spectral estimation has 
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LOW SIGNAL-TO-NOISE CONDITIONS 1561 

been elegantly developed and reported by Bretthorst and others 9-16. In addition to Bayesian 

methods, other alternative computational approaches have been suggested such as the maximum 

entropy and maximum likelihood methods. Bayesian methodology has the advantage that prior 

information can be incorporated into the procedure. These methods have recently been reviewed 

and their application to experimental NMR and other forms of spectroscopy recently 

reported.s*1'9'8~" In this paper we will show that improved spectral estimation in both amplitude 

and frequency is obtained and that the calculations can be performed in a reasonable time period 

with a typical modem computer work station. 

EXPERIMENTAL 

Synthetic data sets were generated according to equations 1 and 2 for the real (in-phase) 
and imaginary (quadrature) signals at each frequency respectively: 

fR(t) = B,cos(wt)exp(-at) + B,sin(wt)exp(-at) 

f,(t) = B,cos(ot)exp(-at) - B,sin(wt)exp(-at) 
(1) 

(2) 
1024 point in-phase and quadrature FID's were generated by incrementing t every 0.004 second 

corresponding to a 500 Hz spectral width if Fourier transformed. After the calculation of each 

time domain data point a random number generated by software was added to the data value. 

The random numbers were scaled to provide various peak-to-peak noise values. In all synthetic 

data sets reported in this paper B, was set equal to 1.00 and B, was set equal to 0.00 to simulate 

a perfectly phased data set. Because the model function contains both cosine and sine terms for 

both in-phase and quadrature channels the Bayesian results account for the phase of the signal. 

Signals with random phase are handled as easily as those with no phase error. Perfectly phased 

data sets were employed to make possible ready comparison between the Bayesian and Fourier 

transformed results without concern about proper phasing of the FT spectrum. The value of a 
used was varied as reported in the results and discussion section. Peak-*peak noise values were 

varied from 0.20 to 4.0. All data sets were analyzed by the program ASAP which performed 

both Fourier transform and Bayesian analysis. For the analysis of the data reported here, Fourier 

transformation was performed first and the peaks observable in the FT sptcrmm used as initial 
estimates for the Bayesian calculation. This was done to speed the calculation. After selection 

of these initial estimates for peak locations, the Bayesian program computes the most probable 

frequencies and decay rates for the model function to fit the data using a simplex or conjugate 

gradient method. The amplitude for each frequency determined to be present in the FID is then 

back calculated. The resulting frequency, amplitude and decay estimates comprise the Bayesian 

"spectrum". In addition to the values for each of these parameters, a statistical uncertainty is 

reported that reflects the SNR of the data set. In the results repoaed below, the Bayesian output 

is compared to the frequencies and intensities obtained by examination of the FT specmm. This 
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1562 EVILIA, EFFIONG, AND WHIlTENBURG 

comparison is shown both graphically and in tabular form. By using a procedure that utilizes 

the FT as prior information the Bayesian calculation produces estimates for the frequencies, 

amplitudes and decay rates for the resonances obtained from the FT that are more accurate than 

possible from the FT plot, but it does not locate signals below the FT noise Level. This 

limitation can be overcome by utilizing a Bayesian estimate at every possible frequency to locate 

signals below the R noise at a considerable increase in computation time. The purpose of this 

study is to evaluate the accuracy of the Bayesian estimations for those cases where the FT results 

have high uncertainties because of noise or rapid signal decay. 

The p-chloroanaline spectrum was acquired on a Varian UNITY 400 NMR spectrometer 

on an approximately 1% solution in deutercchlorofonn. The FID consisted of 20K real and 20K 

imaginary data points. The Fourier transform was performed on the first 4,266 of these data 

points zero filled to 8K and apodized with a decaying exponential function with decay rate 8.5 

set-'. The Bayesian calculation was performed on only the first 1,024 data points without zero 

filling or apodization. The spectral width acquired was 2,941 Hz (0.34 msec sampling rate). The 

transmitter pulse width and power were set to very small values (approximately a 1’ rf pulse) to 

generate a spectrum with a poor signal-to-noise ratio. 

Calculations were performed on either a SUN Microsystems 4/65 (SPARC 1+ with 8 MB 

memory) or 4/75 (SPARC 2 with 32 MB memory) computer. The longest calculation time 

required for any of the spectra reported here was approximately 12 minutes for the p- 

chloroanaline spectrum. 

Results and Discussion 

Synthetic Data Sets: To evaluate the potential of the technique data sets of varying SNR 

were analyzed. The synthetic data considered consisted of two exponentially decaying cosine 

waves having equal amplitudes but different decay rates. The data consisted of a -20 Hz signal 

with decay rate of 5 sec-’ and a signal at +10 Hz with a decay rate of 1 sec-’ where frequencies 

are relative to the center of the spectrum. 

A direct Bayesian/Fourier signal-to-noise ratio comparison is not straightforward because 

the Bayesian estimate does not produce a spectrum per se but, rather, provides a table of 

probable frequencies, amplitudes, decay rates and statistical uncertainties in these quantities. For 

the operational mode used in the study reported here, all frequencies in the vicinity of the 

operator chosen values are evaluated regardless of their evidence level. For an explanation of 

evidence level see Bretthorst16. Frequencies chosen for evaluation that are not actually present 

in the data set result in calculated amplitudes whose e m r  estimates place them in the noise level 

and decay rates that are very nearly zero with large uncertainties. Frequencies actually present 
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LOW SIGNAL-TO-NOISE CONDITIONS 1563 

have small uncertainties in amplitudes and non-zero decay rates. All frequencies satisfying these 

requirements are optimized and reported. The Fourier aansfom frequencies and intensities are 
estimated by inspection of the frequency domain plot for comparison to the Bayesian calculated 
values. Since the Bayesian calculation does not require equally spaced data points while the FT 
does, the final Bayesian optimized value does not comspond to the FT estimate but is a more 

accurate value. The error in the FT frequency estimate results from the fact that only values 
corresponding to equally spaced frequencies across the spectrum are calculated by FT and, if the 

actual frequency does not happen to correspond to one of those points, an error is introduced. 

Obviously, the greater the number of data points used, the smaller this error is. Thus, one often 

"zero fills" in FT methods to reduce this source of emr. All frtquencies other than the ones 

found in the optimization are assigned zero intensity and, thus, there is no "noise", as such, in 

the Bayesian "spectrum". In the Bayesian anaIysis, inmasing noise levels are manifested as 
increasing uncertainties in the values of the frequency, amplitude and decay parameters. In the 
spectra shown in Figures 1 and 2, the plotted Bayesian linewidths are equal to the uncertainties 

in the frequency estimates (1 standard deviation). 

In order to compare the two techniques a noise level had to be designated for the 

Bayesian method. For the purpose of comparison, the Bayesian noise level was determined by 

subtracting the Bayesian determined signals from the experimental FID and performing a Fourier 

transformation on the resulting residual data. The noise level so obtained was found to be equal 

to that of the FT specuum noise of the original data set if al l  of the resonances were found. Any 
resonances not found appear as peaks in the residual spectrum. For the cases reported here, the 
Bayesian calculation correctly found all of the resonances actually present and did not report any 

false positive results. 

A typical two frequency data set is shown in Figure 1 along with its Bayesian and Fourier 

spectra. The Bayesian spectrum was constructed for display purposes by addition of the spectral 

lines to the residual noise evaluated as explained above. Examination of this figure indicates 

a greater SNR for the Bayesian spectrum because its signal intensity is greater than the FT 
intensity while the noise is the same. While no computation technique can actually change the 
SNR of the data, the apparent improvement here is the result of the fact that the l3 intensity is 

inversely proportional to the decay rate while the Bayesian estimate is independent of decay rate. 
Thus, when shown as a plot, the Bayesian spechum appears to have a greater SNR. An 

alternative explanation for this intensity difference is that the Bayesian analysis gives the m e  

signal intensity at the assigned frequency while the Fourier mansform "spreads out" the intensity 
over a substantial linewidth. Therefore, it is necessary to integrate the IT result to obtain the 
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1 .) Bayesian/Fourier Comparison: Two Frequency Data Set. Peak-to-peak noise 
= 1.00. Frequency components -20.00 (amplitude 1.00, decay time 0.2 second); 
+10.00 (amplitude 1.00, decay time 1.00 second). A.) FID and apodization 
function. B.) Spectrum after Fourier transformation with exponential apodization 
with 0.2 second time constant. C.) Spectrum obtained by Bayesian estimation of 
unapodized data as described in text. 
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LOW SIGNAL-TO-NOISE CONDITIONS 1565 

TABLE I 
Two Frequency Data Sets, 0.2 and 1 Second Decay Times 

4.0 10.04 0.7 1 0.49 5 3 

1) 
2) 
3) 
4) 
5) 
6)  
7) 

P-P Time Domain Noise Level. 
Bayesian Determined Frequencies (correct values -20.00 and 10.00). 
Bayesian Determined Amplitude (correct values 1.00). 
Bayesian Determined Decay Rate (correct values 0.2 and 1.00 sec.). 
Bayesian Frequency Domain Signal-to-Noise Ratio (see text). 
Fourier Transform Frequency Domain Signal-to-Noise Ratio. 
No Peak at -2OHz found above noise in FT specuum. 

true intensity of the signal, while Bayesian estimation yields all of the intensity at the correct 

frequency. Therefore, spectral integration is unnecessary. 

One may wonder how an amplitude equal to the signal strength can be obtained if the 

calculation involves only probabilities. First of all, the amplitude of the signal is integrated out 

as a "nuisance parameter" (see BretthorstI6 for a discussion of the theory of this procedure) and 

the most probable frequencies determined, In this way the evidence for the presence of a 
particular frequency is not dependent upon the amplitude of that frequency. Following 

assignment of the most probable frequencies, the value of B, and B, that best fi t  the data for 

each probable frequency are calculated and the signal amplitude determined by equation 3: 
Amplitude = (BIZ + B:)" (3) 

Table I summarizes the results of the Bayesian/Fourier comparison for two frequency data 

sets OR unapodized data. The Bayesian SNR was calculated by dividing the amplitude found by 
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1566 EVILIA, EFFIONG, AND WHITTENBURG 

the program by the Fourier transform peak-to-peak frequency domain noise level and multiplying 

by the usual factor of 2.5.' The Fourier transformed S N R  was calculated from the maximum 

value in the data set evaluated by graphical estimation of the peak amplitude. As can be seen 

from an examination of these tables, the Bayesian results were consistently superior to the Fourier 

results. Although the Bayesian SNR, as defied above, exceeds that of the FT, it cannot 

"find" signals that are below the FT noise level in this implementation because of the requirement 

that the FT peak locations be used as prior information. In principle, Bayesian analysis can be 

performed at arbitranily close frequency points in the spectrum and frequencies having evidence 

levels above some threshold value chosen for amplitude evaluation.16 This type of 

implementation does not require FT prior information and should locate signals below the FT 
noise levels at a considerable increase in calculation time. All frequencies having evidence levels 

above 37 are considered to be present in the spectrum and their amplitudes back calculated in 

this work. 

The effect of applying an apodization function to the data set prior to analysis is to further 

increase the Bayesian SNR relative to the FT value. This effect does not reflect superior 

performance of the Bayesian calculation, however, because the apparent advantage arises from 

the way in which we have defined the SNR in this study rather that any actual difference in the 

calculated results. Briefly, the Bayesian results are not improved by apodization. The amplitude 

found is the same whether the data set is apodized or not and the uncertainties are the same. 

Because the frequency domain noise level is decreased by the apodization, the Bayesian SNR as 

defined in this study, increases in proportion to the decrease in the noise level (but the 

uncertainties in the results are the same). The Fourier transformed SNR is improved by the 

decrease in noise level as well, but by a lesser factor because the linewidth is broadened by the 

apodization process resulting in a lower amplitude at the peak. Therefore, when the comparison 

is made with apodized data sets the relative benefit appears greater, but in reality, the reliability 

of the Bayesian result has not been improved while the FT result can be improved by a matched 

filter weighting function. Thus, in our experimental spectrum, we compare the Bayesian derived 

spectrum to the apodized FT spectrum. Obviously, matched filter apodization can not be done 

in cases where signals of differing decay rates are present, In that case some compromise value 

must be used or the FT performed multiple times to emphasize different decay rates. 

Experimental Data Analysis: Figure 2 shows a comparison of the results obtained for 

the proton spectrum of p-chloroanaline taken under low signal-to-noise ratio conditions. This 

figure shows in dramatic fashion the superior frequency and amplitude estimating ability of the 

Bayesian calculation. First, consider the FT spectrum. If one wishes to know the chemical shifts 
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2.) Bayesian/Founer Comparison: 'H spectrum of p-chloroanaline in CDCl,. 
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TABLE I1 

p-Chloroanaline Spectral 

Comparison 

BAYESIAN ESTIMATE FFT 

Errors in Bayesian estimate equal to one standard deviation. Bayesian amplitude 
and Fourier transform peak height in arbitrary units. 

of the lines, they must be estimated from the plot and those estimates are effected by the overlap 

in the doublets at 560 and 750 Hz as well as the broadening of the signal at -625 Hz. Also, the 

intensities of the resonances cannot be estimated from the peak heights but, rather, require 

integration of the spectrum. Overlap within the doublets precludes accurate integration of their 

individual intensities. Finally, if one is interested in the decay rate of the individual lines, only 

the peak at -625 Hz is sufficiently resolved to allow measurement of its linewidth. 

The Bayesian result yields accurate frequency estimates, not complicated by overlap and 

linewidth; accurate amplitudes for each line in the spectrum also not affected by overlap and 

accurate estimates of the decay rates of each of the spectral lines. Table I1 summarizes the 

quantitative comparison of the data in Figure 2. The small peak at 817 Hz is residual CHCI, in 

the deuterochloroform solvent. 

Thus, it appears that Bayesian spectral estimation can be a viable alternative to FT for 

data analysis. At the current level of implementation, improved characterizations of resonances 
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observed in the FT spectrum are obtained with modest computation time. In future 

implementations it should be possible to extract and characterize signals that are not observable 

at all in the FT spectrum at an increased cost of computation time or to resolve closely spaced 

lines that are not resolved by FT analysis without degradation of the SNR. 

The studies reported here involved simulations or data acquisition under conditions 

typically utilized in Fourier transform NMR specuoscopy. Because of differing requirements of 

the Bayesian method, alternative data acquisition schemes may be employed that will provide 

even greater improvement over the FT spectrum For example, since no artifacts such as sinc 

wiggles are introduced, one need not continue an acquisition until the signal completely decays 

away allowing the use of smaller data sets. A future paper will examine the data acquisition 

ramifications of Bayesian spectral estimation. 

The superior frequency and amplitude estimating ability suggest futun applications to 

situations in which rapid signal decay introduces excessive line broadening in the spectrum 

or where the greater computational time is offset by decreased acquisition time of low SNR 

samples. Some examples of potential applications include specm of quadrupolar relaxed nuclei 

such as I4N, "0 and 33S where linewidths are a serious problem and studies of chemical systems 

undergoing chemical exchange at intermediate rates where extreme broadening can also occurz5 

The ability to determine amplitudes from noisy signals suggests applications involving 

quantitative measurements of dilute components where the excessive acquisition time required 

for FT analysis compensates for the increased Bayesian computation time. Examples of 

applications to each of these problem areas will be reported in the near future. 
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