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Abstract The Bayesian statistical method of spectral estimation is applied to NMR free induction

decay signals at various values of signal-to-noise ratio (SNR). The frequency and amplitude
estimates from the Bayesian calculations are more accurate than those from the commonly used
fast Fourier transformation (FFT) of the same data sets. Both real and synthetic data sets are
examined with the Bayesian results being superior in all cases. In addition to the superior
performance at low SNR the Bayesian derived amplitudes and frequency estimates were not as
affected by signal decay as in Fourier Transformed spectra. Finally, the amplitudes obtained are
equal to the FFT integrated intensities resulting in an apparent frequency domain signal-to-noise
ratio (SNR) greater than the FFT SNR by a factor proportional to the FFT frequency domain
linewidth, For typical high resolution spectra this improvement was approximately a factor of
2.5. Even greater improvement is obtained when rapidly decaying signals are analyzed,
Bayesian computation time for the 6 line p-chloroanaline and chloroform spectrum was

approximately 12 minutes on a modern computer work station.
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Introduction

NMR Spectroscopy is well known to be insensitive relative to other forms of spectroscopy
due to the nearly equal Boltzmann populations at the low energies characteristic of even the
highest field instruments. Because of wide-spread interest in the information available from
NMR spectroscopy, numerous attempts have been made to maximize the signal-to-noise ratio of
NMR instrumnents and to extract the information as efficiently as possible.

The principal means by which SNR has been increased is through increases in the magnet
field strength. Although increases in field strength result in increases in the Bolizmann
distribution leading to signal increases that are approximately proportional to the square of the
magnet field strength, non-ideal factors that become significant at higher frequencies limit SNR
improvements to considerably less than the squared relationship predicts'?. Indeed, the current
state-of-the-art in magnet field strength is approaching a value at which non-idealities and
relaxation effects will result in poorer performance at higher fields for 'H specira of even modest

sized molecules®**

. In addition to the high field magnets, SNR improvements have been made
by refinements in probe technology, RF circuit optimization and the use of very low noise
preamplifiers. Along with the hardware improvements, a variety of sophisticated pulse
techniques such as INEPT and HMQC have been employed for those situations in which the
methods are applicable. These efforts and careful consideration of all the experimental and
interpretation factors affecting SNR's have greatly improved the inherent sensitivity of the NMR
technique compared to even a few years ago."6'7

The hardware, signal processing and pulse sequence developments are approaching the
point of diminishing returns, however, and it is unlikely that future refinements in these areas will
result in improvements comparable to those obtained in the past. While the data acquisition part
of the NMR sensitivity problem has been well developed, the data analysis aspect has been less
well developed. Recent advances in alternative computational methods have shown some
promise for dramatic spectral improvements compared to Fourier transformation for spectral

calculation®!?

. These alternative computational methods rely on statistical theory and appear to
have distinct advantages for extraction of signal from noise. Despite the promise that these
approaches show, they have not received wide spread acceptance because of problems of artifact
generation, they are computationally intensive and of the common belief that the Fourier
transformed result is the “correct” result and cannot be improved® Furthermore, the
mathematical foundation and principles of these methods are complex and difficult to understand.

In this paper we report on the application of the Bayesian method of spectral estimation

to NMR signals of low signal-to-noise ratio. The theory of Bayesian spectral estimation has
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been elegantly developed and reported by Bretthorst and others 16, In addition to Bayesian
methods, other alternative computational approaches have been suggested such as the maximum
entropy and maximum likelihood methods. Bayesian methodology has the advantage that prior
information can be incorporated into the procedure. These methods have recently been reviewed
and their application to experimental NMR and other forms of spectroscopy recently
reported. 111822 In this paper we will show that improved spectral estimation in both amplitude
and frequency is obtained and that the calculations can be performed in a reasonable time period
with a typical modern computer work station.
EXPERIMENTAL
Synthetic data sets were generated according to equations 1 and 2 for the real (in-phase)

and imaginary (quadrature) signals at each frequency respectively:

fr(t) = B cos(mtlexp(-at) + B,sin(wt)exp(-at) (03]

fi(t) = Bycos(wt)exp(-at) - Bsin(wt)exp(-ait) 2)
1024 point in-phase and quadrature FID’s were generated by incrementing t every 0.004 second
corresponding to a 500 Hz spectral width if Fourier transformed. After the calculation of each
time domain data point a random number generated by software was added to the data value.
The random numbers were scaled to provide various peak-to-peak noise values. In all synthetic
data sets reported in this paper B, was set equal to 1.00 and B, was set equal to 0.00 to simulate
a perfectly phased data set. Because the model function contains both cosine and sine terms for
both in-phase and quadrature channels the Bayesian results account for the phase of the signal.
Signals with random phase are handled as easily as those with no phase error. Perfectly phased
data sets were employed to make possible ready comparison between the Bayesian and Fourier
transformed results without concern about proper phasing of the FT spactrum, The value of &
used was varied as reported in the results and discussion section. Peak-to-peak nolse values were
varied from 0.20 to 4.0. All data sets were analyzed by the program ASAP which performed
both Fourier transform and Bayesian analysis. For the analysis of the data reported here, Fourier
transformation was performed first and the peaks observable in the FT spectrum used as initial
estimates for the Bayesian calculation. This was done to speed the calculation. After selection
of these initial estimates for peak locations, the Bayesian program computes the most probable
frequencies and decay rates for the model function to fit the data using a simplex or conjugate
gradient method. The amplitude for each frequency determined to be present in the FID is then
back calculated. The resulting frequency, amplitude and decay estimates comprise the Bayesian
“"spectrum”. In addition to the values for each of these parameters, a statistical uncertainty is
reported that reflects the SNR of the data set. In the results reported below, the Bayesian output

is compared to the frequencies and intensities obtained by examination of the FT spectrum. This
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comparison is shown both graphically and in tabular form. By using a procedure that utilizes
the FT as prior information the Bayesian calculation produces estimates for the frequencies,
amplitudes and decay rates for the resonances obtained from the FT that are more accurate than
possible from the FT plot, but it does not locate signals below the FT noise level. This
limitation can be overcome by utilizing a Bayesian estimate at every possible frequency to locate
signals below the FT noise at a considerable increase in computation time. The purpose of this
study is to evaluate the accuracy of the Bayesian estimations for those cases where the FT results
have high uncertainties because of noise or rapid signal decay.

The p-chloroanaline spectrum was acquired on a Varian UNITY 400 NMR spectrometer
on an approximately 1% solution in deuterochloroform. The FID consisted of 20K real and 20K
imaginary data points. The Fourier transform was performed on the first 4,266 of these data
points zero filled to 8K and apodized with a decaying exponential function with decay rate 8.5
sec’. The Bayesian calculation was performed on only the first 1,024 data points without zero
filling or apodization. The spectral width acquired was 2,941 Hz (0.34 msec sampling rate). The
transmitter pulse width and power were set to very small values (approximately a 1° rf pulse) to
generate a spectrum with a poor signal-to-noise ratio.

Calculations were performed on either 8 SUN Microsystems 4/65 (SPARC 1+ with 8 MB
memory) or 4/75 (SPARC 2 with 32 MB memory) computer. The longest calculation time
required for any of the spectra reported here was approximately 12 minutes for the p-
chloroanaline spectrum.

Results and Discussion

Synthetic Data Sets: To evaluate the potential of the technique data sets of varying SNR
were analyzed. The synthetic data considered consisted of two exponentially decaying cosine
waves having equal amplitudes but different decay rates. The data consisted of a -20 Hz signal
with decay rate of 5 sec”! and a signal at +10 Hz with a decay rate of 1 sec”! where frequencies
are relative to the center of the spectrum.

A direct Bayesian/Fourier signal-to-noise ratio comparison is not straightforward because
the Bayesian estimate does not produce a spectrum per se but, rather, provides a table of
probable frequencies, amplitudes, decay rates and statistical uncertainties in these quantities. For
the operational mode used in the study reporied here, all frequencies in the vicinity of the
operator chosen values are evaluated regardless of their evidence level. For an explanation of
evidence level see Bretthorst'®, Frequencies chosen for evaluation that are not actually present
in the data set result in calculated amplitudes whose error estimates place them in the noise level

and decay rates that are very nearly zero with large uncertainties. Frequencies actually present
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have small uncertainties in amplitudes and non-zero decay rates. All frequencies satisfying these
requirements are optimized and reported. The Fourier transform frequencies and intensities are
estimated by inspection of the frequency domain plot for comparison to the Bayesian calculated
values. Since the Bayesian calculation does not require equally spaced data points while the FT
does, the final Bayesian optimized value does not correspond to the FT estimate but is a more
accurate value. The error in the FT frequency estimate results from the fact that only values
corresponding to equally spaced frequencies across the spectrum are calculated by FT and, if the
actual frequency does not happen to correspond to one of those points, an error is introduced.
Obviously, the greater the number of data points used, the smaller this error is, Thus, one often
"zero fills" in FT methods to reduce this source of error.  All frequencies other than the ones
found in the optimization are assigned zero intensity and, thus, there is no "noise", as such, in
the Bayesian “spectrum”. In the Bayesian analysis, increasing noise levels are manifested as
increasing uncertainties in the values of the frequency, amplitude and decay parameters. In the
spectra shown in Figures 1 and 2, the plotted Bayesian linewidths are equal to the uncertainties
in the frequency estimates (1 standard deviation).

In order to compare the two techniques a noise level had to be designated for the
Bayesian method. For the purpose of comparison, the Bayesian noise level was determined by
subtracting the Bayesian determined signals from the experimental FID and performing a Fourier
transformation on the resulting residual data. The noise level so obtained was found to be equal
to that of the FT spectrum noise of the original data set if all of the resonances were found. Any
resonances not found appear as peaks in the residual spectrum. For the cases reported here, the
Bayesian calculation correctly found all of the resonances actually present and did not report any
false positive results.

A typical two frequency data set is shown in Figure 1 along with its Bayesian and Fourier
spectra. The Bayesian spectrum was constructed for display purposes by addition of the spectral
lines to the residual noise evaluated as explained above. Examination of this figure indicates
a greater SNR for the Bayesian spectrum because its signal intensity is greater than the FT
intensity while the noise is the same. While no computation technique can actually change the
SNR of the data, the apparent improvement here is the result of the fact that the FT intensity is
inversely proportional to the decay rate while the Bayesian estimate is independent of decay rate.
Thus, when shown as a plot, the Bayesian spectrum appears to have a greater SNR. An
alternative explanation for this intensity difference is that the Bayesian analysis gives the true
signal intensity at the assigned frequency while the Fourier transform "spreads out” the intensity

over a substantial linewidth. Therefore, it is necessary to integrate the FT result to obtain the



03:50 30 January 2011

Downl oaded At:

1564

Amplitude

Intensity

Amplitude

EVILIA, EFFIONG, AND WHITTENBURG

2.-
1F
[ n , e
o Bt ltsl i /
1 | !
il
Il
-1
L )] L 1 1 1 1 L 1 I 1 L 1 1 | l 1 1 1
0 1 2 3 4
Time/s
0.3

02

0.1

llllllllll]ll

Frequency / Hz

Frequency / Hz

1.) Bayesian/Fourier Comparison: Two Frequency Data Set. Peak-to-peak noise
= 1.00. Frequency components -20.00 (amplitude 1.00, decay time 0.2 second);
+10.00 (amplitude 1.00, decay time 1.00 second). A.) FID and apodization
function. B.) Spectrum after Fourier transformation with exponential apodization
with 0.2 second time constant. C.) Spectrum obtained by Bayesian estimation of
unapodized data as described in text.
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TABLE I
Two Frequency Data Sets, 0.2 and 1 Second Decay Times
P-P Noise Frequency’ | Amplitude® | Decay* S/N B® S/N F$

-20.00 1.11 0.17 154 14

0.2 10.00 0.99 1.00 138 67

-19.97 1.09 0.18 76 7

0.4 10.00 1.00 1.00 69 33
-19.95 1.24 0.16 34 2

1.0 9.99 0.98 1.01 27 13
. - _ _ 1

2.0 9.99 0.98 1.02 13 6
. . _ _ _1

4.0 10.04 0.71 0.49 5 3

1) P-P Time Domain Noise Level.

2) Bayesian Determined Frequencies (correct values -20.00 and 10.00).
3) Bayesian Determined Amplitude (correct values 1.00).

4) Bayesian Determined Decay Rate (correct values 0.2 and 1.00 sec.).
5) Bayesian Frequency Domain Signal-to-Noise Ratio (see text).

6) Fourier Transformn Frequency Domain Signal-to-Noise Ratio.

7 No Peak at -20Hz found above noise in FT spectrum.

true intensity of the signal, while Bayesian estimation yields all of the intensity at the correct
frequency. Therefore, spectral integration is unnecessary.

One may wonder how an amplitude equal to the signal strength can be obtained if the
calculation involves only probabilities. First of all, the amplitude of the signal is integrated out
as a "nuisance parameter" (see Bretthorst!® for a discussion of the theory of this procedure) and
the most probable frequencies determined. In this way the evidence for the presence of a
particular frequency is not dependent upon the amplitide of that frequency. Following
assignment of the most probable frequencies, the value of B, and B, that best fit the data for
each probable frequency are calculated and the signal amplitude determined by equation 3:

Amplitude = (B2 + B,2)!” 3)

Table I summarizes the results of the Bayesian/Fourier comparison for two frequency data

sets on unapodized data. The Bayesian SNR was calculated by dividing the amplitude found by
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the program by the Fourier transform peak-to-peak frequency domain noise level and multiplying
by the usual factor of 2.5.5 The Fourier transformed SNR was calculated from the maximum
value in the data set evaluated by graphical estimation of the peak amplitude. As can be seen
from an exarmination of these tables, the Bayesian results were consistently superior to the Fourier
results. Although the Bayesian SNR, as defined above, exceeds that of the FT, it cannot
"find" signals that are below the FT noise level in this implementation because of the requirement
that the FT peak locations be used as prior information. In principle, Bayesian analysis can be
performed at arbitrarily close frequency points in the spectrum and frequencies having evidence
levels, above some threshold value chosen for amplitude evaluation.!®  This type of
implementation does not require FT prior information and should locate signals below the FT
noise levels at a considerable increase in calculation time. All frequencies having evidence levels
above 37 are considered to be present in the spectrum and their amplitudes back calculated in
this work.

The effect of applying an apodization function to the data set prior to analysis is to further
increase the Bayesian SNR relative to the FT value. This effect does not reflect superior
performance of the Bayesian calculation, however, because the apparent advantage arises from
the way in which we have defined the SNR in this study rather that any actual difference in the
calculated results. Briefly, the Bayesian results are not improved by apodization. The amplitude
found is the same whether the data set is apodized or not and the uncertainties are the same.
Because the frequency domain noise level is decreased by the apodization, the Bayesian SNR as
defined in this study, increases in proportion to the decrease in the noise level (but the
uncertainties in the results are the same). The Fourier transformed SNR is improved by the
decrease in noise level as well, but by a lesser factor because the linewidth is broadened by the
apodization process resulting in a lower amplitude at the peak. Therefore, when the comparison
is made with apodized data sets the relative benefit appears greater, but in reality, the reliability
of the Bayesian result has not been improved while the FT result can be improved by a matched
filter weighting function. Thus, in our experimental spectrum, we compare the Bayesian derived
spectrum to the apodized FT spectrum. Obviously, matched filter apodization can not be done
in cases where signals of differing decay rates are present. In that case some compromise value
must be used or the FT performed multiple times to emphasize different decay rates.

Experimental Data Analysis: Figure 2 shows a comparison of the results obtained for
the proton spectrum of p-chloroanaline taken under low signal-to-noise ratio conditions. This
figure shows in dramatic fashion the superior frequency and amplitude estimating ability of the

Bayesian calculation. First, consider the FT spectrum. If one wishes to know the chemical shifts
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TABLE II
p-Chloroanaline Spectral
Comparison
BAYESIAN ESTIMATE FFT
Line Frequency Decay Frequency | Peak

# Hz Amplitude Sec’! Hz Height
1 817.58 £ .08 | 146 £ 33 9131 .20 818.1 6.4
2 756.83 £ .05 293 £ 40 133+ .14 756.7 11.9
3 74835+ .04 | 335 £ 39 13.0+ .12 750.2 13.3
4 560.27 £ .04 | 313 £ 37 1151 .12 561.3 13.7
5 552.34 £ .05 | 369 £ 40 13.6 £ .14 553.4 14.2
6 -624.97 £ .05 | 888 £ 123 122 + .14 -623.8 5.0

Errors in Bayesian estimate equal to one standard deviation. Bayesian amplitude
and Fourier transform peak height in arbitrary units.

of the lines, they must be estimated from the plot and those estimates are effected by the overlap
in the doublets at 560 and 750 Hz as well as the broadening of the signal at -625 Hz. Also, the
intensities of the resonances cannot be estimated from the peak heights but, rather, require
integration of the spectrum. Overlap within the doublets precludes accurate integration of their
individual intensities. Finally, if one is interested in the decay rate of the individual lines, only
the peak at -625 Hz is sufficiently resolved to allow measurement of its linewidth.

The Bayesian result yields accurate frequency estimates, not complicated by overlap and
linewidth; accurate amplitudes for each line in the spectrum also not affected by overlap and
accurate estimates of the decay rates of each of the spectral lines. Table II summarizes the
quantitative comparison of the data in Figure 2. The small peak at 817 Hz is residual CHCl, in
the deuterochloroform solvent.

Thus, it appears that Bayesian spectral estimation can be a viable alternative to FT for

data analysis. At the current level of implementation, improved characterizations of resonances
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observed in the FT spectrum are obtained with modest computation time. In future
implementations it should be possible to extract and characterize signals that are not observable
at all in the FT spectrum at an increased cost of computation time or to resolve closely spaced
tines that are not resolved by FT analysis without degradation of the SNR.

The studies reported here involved simulations or data acquisition under conditions
typically utilized in Fourier transform NMR spectroscopy. Because of differing requirements of
the Bayesian method, alternative data acquisition schemes may be employed that will provide
even greater improvement over the FT spectrum. For example, since no artifacts such as sinc
wiggles are introduced, one need not continue an acquisition until the signal completely decays
away allowing the use of smaller data sets. A future paper will examine the data acquisition
ramifications of Bayesian spectral estimation.

The superior frequency and amplitude estimating ability suggest future applications to
situations in which rapid signal decay introduces excessive line broadening in the FT spectrum
or where the greater computational time is offset by decreased acquisition time of low SNR
samples. Some examples of potential applications include spectra of quadrupolar relaxed nuclei
such as "N, 70 and 33S where linewidths are a serious problem and studies of chemical systems
undergoing chemical exchange at intermediate rates where extreme broadening can also occur.?

The ability to determine amplitudes from noisy signals suggests applications involving
quantitative measurements of dilute components where the excessive acquisition time required
for FT analysis compensates for the increased Bayesian computation time. Examples of
applications to each of these problem areas will be reported in the near future.
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